
Dynamic phase transition in the kinetic spin-3/2 Blume–Emery–Griffiths model in an oscillating

field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys.: Condens. Matter 18 6635

(http://iopscience.iop.org/0953-8984/18/29/006)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 12:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/18/29
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 18 (2006) 6635–6653 doi:10.1088/0953-8984/18/29/006

Dynamic phase transition in the kinetic spin-3/2
Blume–Emery–Griffiths model in an oscillating field

Osman Canko, Bayram Deviren and Mustafa Keskin

Department of Physics, Erciyes University, 38039 Kayseri, Turkey

Received 21 April 2006, in final form 8 June 2006
Published 30 June 2006
Online at stacks.iop.org/JPhysCM/18/6635

Abstract
The dynamic phase transitions are studied, within a mean-field approach, in
the kinetic Blume–Emery–Griffiths model under the presence of a time varying
(sinusoidal) magnetic field by using the Glauber-type stochastic dynamics. The
behaviour of the time-dependence of the order parameters and the behaviour
of the average order parameters in a period, which is also called the dynamic
order parameters, as a function of reduced temperature, are investigated. The
nature (continuous and discontinuous) of transition is characterized by studying
the average order parameters in a period. The dynamic phase transition points
are obtained and the phase diagrams are presented in the reduced magnetic field
amplitude and reduced temperature plane. The phase diagrams exhibit one, two,
or three dynamic tricritical points and a dynamic double critical end point, and
besides a disordered and two ordered phases, seven coexistence phase regions
exist, which strongly depend on interaction parameters. We also calculate the
Liapunov exponent to verify the stability of solutions and the dynamic phase
transition points.

1. Introduction

Spin-3/2 Ising models have been paid much attention, which was first introduced [1] in
connection to explaining the phase transition in DyVO4. The most general spin-3/2 Ising model
Hamiltonian with bilinear (J ) and biquadratic (K ) nearest-neighbour pair interactions and
a single-ion potential or crystal-field interaction (D) is the spin-3/2 Blume–Emery–Griffiths
(BEG) model. The spin-3/2 Ising Hamiltonian with only J and D interactions is known as
the spin-3/2 Blume–Capel (BC) model and the spin-3/2 Ising Hamiltonian with only J and
K interactions is known as the isotropic spin-3/2 (BEG) model. The equilibrium properties of
the spin-3/2 BEG model for K/J � 0 have been studied and its phase diagrams have been
calculated by renormalization-group (RG) techniques [2], the effective field theory (EFT) [3],
the Monte Carlo (MC) simulation and a density-matrix-RG method [4]. An exact formulation
of the spin-3/2 BEG model on a Bethe lattice was investigated by using the exact recursion
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equations [5]. The ferromagnetic spin-3/2 BEG model with repulsive biquadratic coupling,
i.e. K/J < 0, has also been investigated. An early attempt to study the ferromagnetic spin-3/2
BEG model was made by Barreto and Bonfim [6] and Bakkali et al [7] within the mean-field
approximation (MFA) and also the MC calculation, and the EFT, respectively. Barreto and
Bonfim [6], and Bakkali et al [7] presented two phase diagrams, one for the spin-3/2 BC
model and one for the isotropic spin-3/2 BEG model. Tucker [8] studied the spin-3/2 BEG
model with K/J < 0 by using the cluster variation method in pair approximation (CVMPA)
and only presented the phase diagrams of the spin-3/2 BC and isotropic spin-3/2 BEG models
for a few values of the coordination number. Bakchich and Bouziani [9] calculate the phase
diagram of the model only in the (T/J, D/J ) plane for the two different values of K/J within
an approximate renormalization-group approach of the Migdal–Kadanoff type. Ekiz et al [10]
investigated the model on the Bethe lattice using the exact recursion equations and presented
the phase diagrams in the (kT/J , K/J ) plane for several values of D/J and in the (kT/J ,
D/J ) plane for several values of K/J . Ekiz [11] extended the previous work, i.e., [10], for the
presence of the external magnetic field. He considered only the ferromagnetic case. Recently,
Keskin et al [12] studied the equilibrium behaviour of the antiferromagnetic spin-3/2 BEG
model and presented the phase diagrams.

On the other hand, the ferromagnetic spin-3/2 BC model has been studied within
the EFT [13], the MFA [14], the two-spin cluster approximation in the cluster expansion
method [15], conventional finite-size-scaling, conformal invariance, and MC simulations [16],
the pair approximation for the free energy and MC simulations [17], and a thermodynamically
self-consistent theory based on an Ornstein–Zernike approximation [18] and extensive MC
simulations [19]. The exact solution of the ferromagnetic spin-3/2 BC model was presented on
the Bethe lattice by means of the exact recursion relations [20]. An early attempt to study the
antiferromagnetic spin-3/2 BC model was made by Bakchich et al [21]. They examined the
multicritical behaviour of the model with antiferromagnetic bilinear interaction, with a crystal
field and under an external magnetic field by using the MFA. Bekhechi and Benyoussef [22]
investigated the multicritical behaviour of the antiferromagnetic spin-3/2 BC model by using
the transfer-matrix finite-size-scaling (TMFSS) calculations and MC simulations. Ekiz [23, 24]
studied the antiferromagnetic spin-3/2 BC model on the Bethe lattice in an external magnetic
field by using the recursion method. Recently, Keskin et al [25] studied the antiferromagnetic
spin-3/2 BC model in an external magnetic field by the cluster variation method. Moreover,
the dynamic aspect of the spin-3/2 BC model was made by Grandi and Figueiredo [26].
They employed the MC simulations and short-time dynamic scaling to determine the static
and dynamic critical exponents for the two-dimensional spin-3/2 BC model and discussed
critical exponents, extensively. Keskin et al [27] studied the dynamic phase transition in the
kinetic spin-3/2 BC under presence of a time varying magnetic field by using the Glauber-type
stochastic dynamic.

While the equilibrium properties of the spin-3/2 BEG model have been studied
extensively, to our knowledge the nonequilibrium aspects of the spin-3/2 BEG model have
not been investigated. The purpose of the present paper is, therefore, to study within the
mean-field approach the stationary states of the kinetic spin-3/2 BEG model in the presence
of a time-dependent oscillating external magnetic field. We use the Glauber-type stochastic
dynamics to describe the time evolution of the system [28]. Especially, we investigate the
time dependence of average magnetization and the behaviour of the dynamic order parameters
as a function of the temperature. In these studies, we obtain the dynamical phase transition
(DPT) points and construct the phase diagrams in the temperature and magnetic field amplitude
plane. We also calculate the Liapunov exponent to verify the stability of solutions and the DPT
points. This type of calculation was first applied to a kinetic spin-1/2 Ising system by Tomé
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and Oliveira [29] and then used to study kinetics of a classical mixed spin-1/2 and spin-1
Ising system by Buendı́a and Machado [30], and kinetics of spin-1 Ising [31, 32] and spin-3/2
BC [27] models by Keskin et al.

We should also mention that the dynamic phase transition (DPT) is one of the characteristic
behaviours in a nonequilibrium system in the presence of an oscillating external magnetic
field and has been paid much attention in recent years. The DPT was first found in a
study within a mean-field approach of the stationary states of the kinetic spin-1/2 Ising
model under a time-dependent oscillating field [29, 33], by using the Glauber-type stochastic
dynamics [28], and it was followed by Monte Carlo simulation, which allows the microscopic
fluctuations, and research of kinetic spin-1/2 Ising models [34–37], as well as further mean-
field studies [38]. Moreover, Tutu and Fujiwara [39] developed a systematic method for
getting the phase diagrams in DPTs, and constructed the general theory of DPTs near
the transition point based on mean-field description, such as Landau’s general treatment
of the equilibrium phase transitions. The DPT has also been found in a one-dimensional
kinetic spin-1/2 Ising model with boundaries [40]. Experimental evidence for the DPT
has been found in highly anisotropic (Ising-like) and ultrathin Co/Cu(001) ferromagnetic
films [41] and in ferroic systems (ferromagnets, ferroelectrics and ferroelastics) with pinned
domain walls [42]. Furthermore, we should also mention that recent research on the DPT
has been widely extended to more complex systems such as vector type order parameter
systems, e.g., the Heisenberg-spin systems [43], XY model [44], a Ziff–Gulari–Barshad
model for CO oxidation with CO desorption to periodic variation of the CO pressure [45]
and high-spin Ising models such as kinetics of spin-1 Ising [31, 32] and spin-3/2 BC [27]
models, and a mixed-spin Ising model, e.g., the kinetics of a mixed spin-1/2 and spin-
1 Ising model [30]. The DTP in model ferromagnetic systems (Ising and Heisenberg) in
the presence of a sinusoidally oscillating magnetic field have been reviewed recently by
Acharyya [46].

Finally, it is worthwhile to mention that the dynamic phase transition observed from the
solution of a mean-field dynamical equation is not truly dynamic as it can exist for such
equations of motion even in the zero frequency (static) limit of the driving field. This transition
is an artifact of the mean-field approximation, which neglects nontrivial fluctuations. The
reason is that the DPT can exist even in the static limit as follows. For field amplitudes less
than the static coercive field hC (which is nonzero below the ordered–disordered transition
temperatures TC), the response order parameters vary periodically but asymmetrically even in
the zero frequency limit. The system then remains locked to the higher, yet locally attractive,
well of the free energy and cannot go to the other (deeper) well, unless driven by any noise or
fluctuations that are absent in the mean-field system [34, 36]. Although the numerical solution
of the mean-field dynamical equations of motion cannot provide for a true dynamic phase
transition, it is still important because it can be used to obtain some qualitative features of the
dynamic phase transition. Moreover, the mean-field equation of the spin-1/2 Ising system can
be linearized and this linearized equation is exactly solvable [46].

The outline of the remaining part of this paper is organized as follows. In section 2, the
spin-3/2 BEG model is presented briefly. In section 3, the derivation of the mean-field dynamic
equations of motion is given by using a Glauber-type stochastic dynamics in the presence of
a time-dependent oscillating external magnetic field. In section 4, the stationary solutions of
the coupled dynamic equations are solved and the thermal behaviours of the dynamic order
parameters are studied, and as a result the DPT points are calculated. Moreover, we also
calculate the Liapunov exponent to verify the stability of a solution and the DPT points.
Section 5 contains the presentation and the discussion of the phase diagrams. Finally, a
summary and discussion are given in section 6.
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2. The model

The spin-3/2 BEG model, which is the most general spin-3/2 Ising model, has been paid much
attention for many years. The model is described by the following Hamiltonian:

H = −J
∑

〈i j〉
Si S j−K

∑

〈i j〉

(
S2

i − 5/4
) (

S2
j − 5/4

)− �
∑

i

(
S2

i − 5/4
)−H

∑

i

Si , (1)

where the Si take the value ±3/2 or ±1/2 at each i site of a lattice and the summation index
〈i j〉 denotes a summation over all pairs of neighbouring spins. J and K are, respectively, the
nearest-neighbour bilinear and biquadratic exchange constants, ∆ is the crystal field interaction
or single-ion anisotropy constant, and the last term, H , is a time-dependent external oscillating
magnetic field. H is given by

H (t) = H0 cos(ωt), (2)

where H0 and ω = 2πν are the amplitude and the angular frequency of the oscillating field,
respectively. The system is in contact with an isothermal heat bath at absolute temperature.

The spin-3/2 BEG model is also a three-order-parameter system; these are introduced as
follows. (1) The average magnetization s = 〈Si 〉, which is the excess of one orientation over
the other orientation, also called the dipole moment. (2) The quadrupole moment q , that is a
linear function of the average squared magnetization, i.e. q = 〈

S2
i

〉 − 5/4, which is different
from the definition q ≡ 〈

S2
i

〉
used in some research [3, 6–9]. The first definition ensures that

q = 0 at infinite temperature. (3) The octupolar moment r , which is an odd function of the
average magnetization 〈Si 〉 and defined as r = 5/3

〈
S3

i

〉 − 41/12 〈Si 〉. This definition also
ensures that r = 0 at infinite temperature and this is different from the definition r = 〈

S3
i

〉
used

by some research [3, 7, 8]. We should also mention that since the behaviour of r is similar to
the behaviour of s, we will not use r as many researchers have done.

3. Derivation of mean-field dynamic equations

Now, we apply the Glauber-type stochastic dynamics to obtain the mean-field dynamic equation
of motion. Thus, the system evolves according to a Glauber-type stochastic process at a rate
of 1/τ transitions per unit time. We define P(S1, S2, . . . , SN ; t) as the probability that the
system has the S-spin configuration, S1, S2, . . . , SN , at time t . The time-dependence of this
probability function is assumed to be governed by the master equation which describes the
interaction between spins and heat bath, and can be written as

d

dt
P(S1, S2, . . . , SN ; t) = −

∑

i




∑

Si �=S′
i

Wi (Si → S′
i )



 P(S1, S2, . . . , Si , . . . , SN ; t)

+
∑

i




∑

Si �=S′
i

Wi (S′
i → Si )P(S1, S2, . . . , S′

i , . . . , SN ; t)



 , (3)

where Wi (Si → S′
i ), the probability per unit time that the i th spin changes from the value Si

to S′
i , and in this sense the Glauber model is stochastic. Since the system is in contact with

a heat bath at absolute temperature T , each spin can change from the value Si to S′
i with the

probability per unit time

Wi (Si → S′
i ) = 1

τ

exp
(−β�E(Si → S′

i )
)

∑
S′

i
exp

(−β�E(Si → S′
i )
) , (4)
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where β = 1/kBT, kB is the Boltzmann factor,
∑

S′
i

is the sum over the four possible values of
S′

i ,±3/2,±1/2 and

�E(Si → S′
i ) = −(S′

i − Si )

(
H + J

∑

〈 j〉
Sj

)
− (S′2

i − S2
i )

(
� + K

∑

〈 j〉

(
S2

j − 5/4
)
)

, (5)

gives the change in the energy of the system when the Si -spin changes. The probabilities satisfy
the detailed balance condition

Wi (Si → S′
i )

Wi (S′
i → Si )

= P(S1, S2, . . . , S′
i , . . . , SN )

P(S1, S2, . . . , Si , . . . , SN )
, (6)

and substituting the possible values of Si we get

Wi
(

3
2 → − 3

2

) = Wi
(

1
2 → − 3

2

) = Wi
(− 1

2 → − 3
2

) = Wi
(− 3

2 → − 3
2

)

= 1

2τ

exp(−βy) exp(−3βx/2)

exp(βy) cosh(−3βx/2) + exp(−βy) cosh(−βx/2)
, (7a)

Wi
(

3
2 → − 1

2

) = Wi
(

1
2 → − 1

2

) = Wi
(− 1

2 → − 1
2

) = Wi
(− 3

2 → − 1
2

)

= 1

2τ

exp(−βy) exp(−βx/2)

exp(βy) cosh(−3βx/2) + exp(−βy) cosh(−βx/2)
, (7b)

Wi
(

3
2 → 1

2

) = Wi
(

1
2 → 1

2

) = Wi
(− 1

2 → 1
2

) = Wi
(− 3

2 → 1
2

)

= 1

2τ

exp(−βy) exp(βx/2)

exp(βy) cosh(−3βx/2) + exp(−βy) cosh(−βx/2)
, (7c)

Wi
(

3
2 → 3

2

) = Wi
(

1
2 → 3

2

) = Wi
(− 1

2 → 3
2

) = Wi
(− 3

2 → 3
2

)

= 1

2τ

exp(βy) exp(3βx/2)

exp(βy) cosh(−3βx/2) + exp(−βy) cosh(−βx/2)
, (7d)

where x = H + J
∑

〈 j〉 Sj , y = � + K
∑

〈 j〉 (S2
j − 5/4). Notice that, since Wi (Si → S′

i ) does
not depend on the value Si , we can write Wi (Si → S′

i ) = Wi (S′
i ), then the master equation

becomes

d

dt
P(S1, S2, . . . , SN ; t) = −

∑

i




∑

S′
i �=Si

Wi (S′
i )



 P(S1, S2, . . . , Si , . . . , SN ; t)

+
∑

i

Wi (Si )




∑

S′
i �=Si

P(S1, S2, . . . , S′
i , . . . , SN ; t)



. (8)

Since the sum of probabilities is normalized to one, by multiplying both sides of
equation (8) by first Sk then (S2

k − 5/4) and taking the average, we obtain

τ
d

dt
〈Sk〉 = −〈Sk〉 +

〈
3 exp(βy) sinh(3βx/2) + exp(−βy) sinh(βx/2)

2 exp(βy) cosh(3βx/2) + 2 exp(−βy) cosh(βx/2)

〉
, (9)

τ
d

dt
〈S2

k − 5/4〉 = −〈S2
k − 5/4〉 +

〈
exp(βy) cosh(3βx/2) − exp(−βy) cosh(βx/2)

exp(βy) cosh(3βx/2) + exp(−βy) cosh(βx/2)

〉
. (10)

These dynamic equations can be written in terms of a mean-field approach and hence the set of
the mean-field dynamical equations of the system in the presence of a time-varying field is
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τ
d

dt
〈S〉 = −〈S〉 +

〈
3 exp(βa1) sinh(3βa2/2) + exp(−βa1) sinh(βa2/2)

2 exp(βa1) cosh(3βa2/2) + 2 exp(−βa1) cosh(βa2/2)

〉
, (11)

τ
d

dt
〈S2 − 5/4〉 = −〈S2 − 5/4〉 +

〈
exp(βa1) cosh(3βa2/2) − exp(−βa1) cosh(βa2/2)

exp(βa1) cosh(3βa2/2) + exp(−βa1) cosh(βa2/2)

〉
,

(12)

where a1 = � + K z〈S2 − 5/4〉, a2 = J z〈S〉 + H0 cos(ωt), and z is the coordination
number. The system evolves according to the set of these coupled differential equations given
by equations (11) and (12) that can be written in the form

�
d

dξ
m = −m + 3 exp[(d + kq)/T ] sinh[3(m + h cos ξ)/2T ] + exp[−(d + kq)/T ] sinh[(m + h cos ξ)/2T ]

2 exp[(d + kq)/T ] cosh[3(m + h cos ξ)/2T ] + 2 exp[−(d + kq)/T ] cosh[(m + h cos ξ)/2T ] ,
(13)

τ
dq

dt
= −q + exp[(d + kq)/T ] cosh[3(m + h cos ξ)/2T ] − exp[−(d + kq)/T ] cosh[(m + h cos ξ)/2T ]

exp[(d + kq)/T ] cosh[3(m + h cos ξ)/2T ] + exp[−(d + kq)/T ] cosh[(m + h cos ξ)/2T ] , (14)

where m ≡ 〈S〉, q ≡ 〈S2〉 − 5/4, ξ = ωt , T = (βz J )−1, k = K/J , d = �/z J ,
h = H0/z J,� = τω. Hence, the set of the mean-field dynamical equations for the order
parameters is obtained. We fixed z = 4 and � = 2π . The solution and discussion of this
equation are given in the next section.

4. Thermal behaviours of dynamic order parameters and dynamic phase transition
points

In this section, we shall first solve the set of dynamic equations and present the behaviours of
average order parameters in a period as a function of the reduced temperature, and as a result the
DPT points are calculated. Moreover, we also calculate the Liapunov exponents to verify the
stability of solutions and the dynamic phase transition points. For these purposes, first we have
to study the stationary solutions of the set of dynamic equations, given in equations (13) and
(14), when the parameters T, k, d and h are varied. The stationary solutions of equations (13)
and (14) will be a periodic function of ξ with period 2π ; that is, m (ξ + 2π) = m (ξ) and
q (ξ + 2π) = q (ξ). Moreover, they can be one of three types according to whether they have
or do not have the property

m (ξ + π) = −m (ξ) , (15a)

and

q (ξ + π) = −q (ξ) . (15b)

A solution that satisfies both equations (15a) and (15b) is called a symmetric solution, which
corresponds to a disordered (D) solution. In this solution, the magnetization m(ξ) always
oscillates around the zero value and is delayed with respect to the external magnetic field. On
the other hand, the quadrupolar order parameters q(ξ) oscillate around a non-zero value for
finite temperatures and around a zero value for the infinite temperature due to the reason that
q = 0 at the infinite temperature by the definition of q , given in section 2. The second type of
solution, which does not satisfy equations (15a) and (15b), is called a nonsymmetric solution,
that corresponds to a ferromagnetic solution. In this case the magnetization and quadrupolar
order parameters do not follow the external magnetic field any more, but instead of oscillating
around a zero value; they oscillate around a nonzero value, namely m(ξ) oscillates around either
±3/2 or ±1/2. Hence, if it oscillates around ±3/2, this nonsymmetric solution corresponds to
the ferromagnetic ±3/2 (F3/2) phase and if it oscillates around ±1/2, this corresponds to the
ferromagnetic ±1/2 (F1/2) phase. The third type of solution, which does satisfy equation (15a)
but does not satisfy equation (15b), corresponds to ferroquadrupolar or simply quadrupolar
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Figure 1. Time variations of the magnetization (m) and the quadrupolar order parameter (q): (a)
exhibiting a disordered phase (D), k = 0.1, d = 0.50, h = 1.50, and T = 1.50. (b) Exhibiting
a ferromagnetic phase-3/2 (F3/2), k = 1.0, d = 0.75, h = 0.50, and T = 1.0. (c) Exhibiting a
ferromagnetic phase-1/2 (F1/2), k = 0.5, d = 1.25, h = 0.25, and T = 0.125. (d) Exhibiting a
coexistence region (F3/2 + F1/2), k = 0.1, d = −0.50, h = 0.125, and T = 0.125. (d) Exhibiting
a coexistence region (F3/2 + D), k = 2.0, d = 1.25, h = 1.25, and T = 0.25. (e) Exhibiting a
coexistence region (F3/2+F1/2+FQ), k = 0.5, d = −0.125, h = 0.4, and T = 0.05. (f) Exhibiting
a coexistence region (F3/2 + FQ), k = 1.0, d = 0.125, h = 0.50, and T = 0.50. (g) Exhibiting
a coexistence region (F1/2 + FQ), k = 0.1, d = −1.0, h = 0.45, and T = 0.05. (h) Exhibiting a
coexistence region (F3/2 + FQ + D), k = 0.5, d = −0.25, h = 1.25, and T = 0.10. (i) Exhibiting
a coexistence region (FQ + D), k = 2.0, d = −0.125, h = 2.0, and T = 0.5.

(FQ) phase. In this solution, m(ξ) oscillates around the zero value and is delayed with respect
to the external magnetic field and q(ξ) does not follow the external magnetic field any more;
but instead of oscillating around a zero value it oscillates around a nonzero value, namely
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Figure 1. (Continued.)

either −1 or +1. Hence if it oscillates around −1 this nonsymmetric solution corresponds
to the ferroquadrupolar or simply quadrupolar (FQ) phase, and if it oscillates around +1
this corresponds to the disordered phase (D). These facts are seen explicitly by solving
equations (13) and (14) numerically. Equations (13) and (14) are solved by using the numerical
method of the Adams–Moulton predictor corrector method for a given set of parameters and
initial values and presented in figure 1. From figure 1, one can see ten different solutions,
namely the D, F3/2, and F1/2 phases or solutions and seven coexistence solutions, namely the
F3/2 + F1/2 in which F3/2 and F1/2 solutions coexist, the F3/2 + D in which F3/2 and D solutions
coexist, the F3/2 + FQ in which F3/2 and FQ solutions coexist, the F1/2 + FQ in which F1/2 and
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FQ solutions coexist, the F3/2 + F1/2 + FQ in which F3/2, F1/2, and FQ solutions coexist, the
F3/2 + FQ + D in which F3/2, FQ, and D solutions coexist, and the FQ + D in which FQ and D
solutions coexist. In figure 1(a) only the symmetric solution is always obtained, hence we have
a disordered (D) solution, but in figures 1(b) and (c) only the nonsymmetric solutions are found;
therefore, we have the F3/2 and F1/2 solutions, respectively. These solutions do not depend on
initial values. In figure 1(d), we have nonsymmetric solutions for m(ξ) and q(ξ), because m(ξ)

oscillates around either ±3/2 or ±1/2 values and q(ξ) around +1 or −1, respectively, hence
we have the coexistence solution (F3/2 + F1/2). In figure 1(e), m(ξ) oscillates around either
±3/2 or zero values and q(ξ) around +1; as explained above, the solution of m(ξ) oscillates
around zero values and q(ξ) around nonzero values corresponds to the D phase, because q(ξ) is
around +1 or nonzero values for low temperatures but around zero values for high temperatures.
Therefore, we have the coexistence solution (F3/2 + D). In figure 1(f), m(ξ) oscillates around
±3/2, q(ξ) around +1, and m(ξ) oscillates around ±1/2 or zero values, q(ξ) around −1,
hence we have the coexistence solution (F3/2 + F1/2 + FQ). Similarly, in figures 1(g)–(j) we
have the F3/2 +FQ, F1/2 +FQ, F3/2 +FQ + D, and FQ + D coexistence solutions, respectively.
We should also mention that the solutions shown in figures 1(d)–(j) depend on the initial values.

Thus, figure 1 displays that we have ten phases in the system, namely D, F3/2, F1/2,
F3/2 + F1/2, F3/2 + D, F3/2 + F1/2 + FQ, F3/2 + FQ, F1/2 + FQ, F3/2 + FQ + D, and FQ + D
solutions or phases. In order to see the dynamic phase boundaries among these ten phases, we
have to calculate DPT points and then we can present phase diagrams of the system. DPT points
will be obtained by investigating the behaviour of the average order parameters in a period or
the dynamic order parameters as a function of the reduced temperature. These investigations
will also be checked and verified by calculating the Liapunov exponents.

The dynamic order parameters, namely the dynamic magnetization (M) and the dynamic
quadruple moment (Q), are defined as

M = 1

2π

∫ 2π

0
m(ξ) dξ, (16)

Q = 1

2π

∫ 2π

0
q(ξ) dξ. (17)

The behaviour of M and Q as a function of the reduced temperature for several values of
k, d , and h are obtained by combining the numerical methods of Adams–Moulton predictor
corrector with the Romberg integration. We gave explanatory a few interesting examples to
illustrate the calculation of the DPT and the dynamic phase boundaries among ten phases,
seen in figures 2(a)–(e). In the figures, thick and thin lines represent M and Q, respectively;
TC and Tt are the critical or the second-order phase transition and first-order phase transition
temperatures for both M and Q, respectively. Figures 2(a) and (b) show the behaviour of M and
Q as a function of the reduced temperature for k = 0.1, d = −0.375, and h = 0.125 for three
different initial values; i.e., the initial values of M and Q are taken as 3/2 and 1.0, respectively,
for figure 2(a), and M = 1/2 and Q = −1.0 or M = 0 and Q = −1.25 for figure 2(b). In
figure 2(a), M = 3/2 and Q = 1.0 at zero temperature and M decreases to zero continuously as
the reduced temperature increases, hence the system exhibits a second-order phase transition.
The phase transition is from the F3/2 phase to the D phase. On the other hand, Q decreases
until TC, as the temperature increases, and at TC, it makes a cusp and then increases again;
finally, it becomes zero at infinite temperature. In figure 2(b), M = 1/2 and Q = −1.0 at
zero temperature, the system undergoes two successive phase transitions: the first one is a first-
order phase transition, because M and Q increase to 3/2 and 1.0, respectively, discontinuously
as the temperature increases and the temperature where the discontinuity occurs is the first-
order phase transition temperature, Tt; the transition is from the F1/2 phase to the F3/2 phase.
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The second one is a second-order phase transition from the F3/2 phase to the D phase. From
figures 2(a) and (b), one can see that the F3/2 + F1/2 coexistence phase region also exists in the
system; compare figures 2(a) and (b) with figure 4(d). Figures 2(c)–(e) illustrate the thermal
variations of M and Q for k = 0.1, d = −0.375, and h = 0.375 for three different initial
values, i.e. the initial values M = 3/2, Q = 1.0 for figure 2(c), M = 1/2 and Q = −1.0 for
figure 2(d), and M = 0 and Q = −1.0 for figure 2(e). The behaviour of figure 2(c) is similar
to figure 2(a), hence the system undergoes a second-order phase transition from the F3/2 phase
to the D phase. The behaviour of figure 2(d) is similar to figure 2(b), therefore the system
undergoes two successive phase transitions and thus the F3/2 + F1/2 coexistence phase region
also exists in the system. In figure 2(e), M = 0 and Q = −1.0 at zero temperature and the
system undergoes two successive phase transitions: the first one is a first-order phase transition
from the FQ phase to the F3/2 phase and the second one is a second-order phase transition from
the F3/2 phase to the D phase. From figures 2(c)–(e), one can see that the F3/2 + F1/2 + FQ
coexistence phase region also exists in the system; compare figures 2(c)–(e) with figure 4(d).

Now we can check and verify the stability of solutions, as well as the DPT points by
calculating the Liapunov exponents. If we write equations (16) and (17) as

�
dm

dξ
= F1(m, ξ), (18)

�
dq

dξ
= F2(q, ξ), (19)

then the Liapunov exponents λm and λq are given by

�λm = 1

2π

∫ 2π

0

∂ F1

∂m
dξ, (20)

�λq = 1

2π

∫ 2π

0

∂ F2

∂q
dξ . (21)

The solutions are stable when λm < 0 and λq < 0. We have two Liapunov exponents, namely,
one is associated with the symmetric solution, λms and λqs , and the other with the nonsymmetric
solution, λmn and λqn , for both m and q . If λms and λmn increase to zero continuously as
the reduced temperature approaches the phase transition temperature, the temperature where
λmn = λms = 0 is the second-order phase transition temperature, TC. Moreover, λqn and λqs

increase continuously as the reduced temperature approaches the phase transition temperature
and the temperature where λqn and λqs make a cusp is the second-order phase transition
temperature, TC. The reason λqn and λqs are not zero at TC is that Q is not zero at TC and
it is zero at infinite temperature. On the other hand, if the Liapunov exponents approach the
phase transition temperature, the temperature at which the Liapunov exponents make a jump
discontinuity is the first-order phase transition temperature. In order to see these behaviours
explicitly, the values of the Liapunov exponents are calculated and plotted as a function of
the reduced temperature for k = 0.1, d = −0.375, and h = 0.125 for two different initial
values; i.e., the initial values of M and Q are taken as 3/2 and 1.0 for figure 3(a) and M = 1/2
and Q = −1 for figure 3(b), respectively. These values correspond to figures 2(a) and (b),
respectively. In the figures, thick and thin lines represent λs and λn , respectively, and TC is the
second-order phase transition temperature and Tt is the first-order phase transition temperature.
In figure 3(a), the system undergoes a second-order phase transition, because λmn = λms = 0
at TC = 0.705 (λmn and λms correspond to the F3/2 phase and D phase, respectively). On the
other hand, λqn and λqs make a cusp at TC (λqn and λqs correspond to the F3/2 and D phases,
respectively). Figure 3(b) shows that the system exhibits two successive phase transitions. The
first one is a first-order, because the Liapunov exponents make a jump discontinuity, hence
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Figure 2. The reduced temperature dependence of the dynamic magnetization M and (the thick
solid line) and the dynamic quadruple moment (Q) (the thin solid line). TC and Tt are the critical or
the second-order phase transition and the first-order phase transition temperatures for both M and
Q, respectively. (a) Exhibiting a second-order phase transition from the F3/2 phase to the D phase
for k = 0.1, d = −0.375, and h = 0.125; 0.705 is found for TC; (b) exhibiting two successive
phase transitions; the first is a first-order one from the F1/2 phase to the F3/2 phase, the second is
a second-order one from the F3/2 phase to the D phase for k = 0.1, d = −0.375, and h = 0.125;
0.15 and 0.705 found for Tt and TC respectively. (c) Exhibiting a second-order phase transition
from the F3/2 phase to the D phase for k = 0.1, d = −0.375, and h = 0.375; 0.685 is found
for TC. (d) Exhibiting two successive phase transitions; the first is a first-order one from the F1/2

phase to the F3/2 phase, the second is a second-order one from the F3/2 phase to the F3/2 to the D
phase for k = 0.1, d = −0.375, and h = 0.375; 0.025 and 0.685 found for Tt and TC respectively.
(e) Exhibiting two successive phase transitions; the first is a first-order one from the FQ phase to the
F3/2, the second is a second-order one from the F3/2 phase to the D phase for k = 0.1, d = −0.375,
and h = 0.375; 0.135 and 0.685 found for Tt and TC respectively.

the first-order phase transition temperature occurs at Tt = 0.150 (λmn′ and λqn′ correspond to
the F1/2 phase). The second one is the second-order phase transition at TC = 0.705, which is
similar to figure 3(a). If one compares figures 3(a) and (b) with figures 2(a) and (b), respectively,
one can see that TC and Tt found by using both calculations are exactly the same. Moreover,
we have also verified the stability of the solution by this calculation, because we have always
found that λm < 0 and λq < 0.

Finally, as mentioned before, the DPT, observed from the solution of the mean-field
dynamical equations, is not truly dynamic. This is because for field amplitude less than the
coercive field hC (which is nonzero below the order–disorder transition temperature, TC), the
response order parameters vary periodically but asymmetrically even in the zero frequency
limit; the system remains locked to one well of the free energy and cannot go to the other one,
in the absence of noise or fluctuations [34, 36].
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Figure 3. The values of the Liapunov exponents as a function of the reduced temperature (T ) for
k = 0.1, d = −1.5, and h = 0.5. Thick and thin lines represent the λs and λn , λn′ , respectively,
TC are the critical or the second-order phase transition for both M and Q, and Tt is the first-order
phase transition temperatures for M and Q. (a) For the initial values M and Q are taken as 3/2 and
1.0, respectively. The system undergoes a second-order phase transition, because λmn = λms = 0
at TC = 0.705 (λmn and λms correspond to the F3/2 and D phases, respectively). λqn and λqs make
a cusp, hence the second-order phase transition temperature occurs at TC = 0.705 (λqn and λqs

correspond to the F3/2 and D phases, respectively). (b) For the initial values M and Q are taken
as 1/2 and −1.0 and/or 0 and −1.25, respectively. The system undergoes two successive phase
transitions: the first one is first order, because the Liapunov exponents make a jump discontinuity at
Tt = 0.15 and the second one is second order, because λmn = λms = 0; λqn and λqs make a cusp
at TC = 0.705 (λmn′ and λqn′ correspond to the F1/2 phase, λmn and λqn correspond to the F3/2

phase, λms and λqs correspond to the D phase).

5. Phase diagrams

Since we have obtained and verified the DPT points in section 4, we can now present the
phase diagrams of the system. The calculated phase diagrams in the (T, h) plane are presented
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Figure 4. Phase diagrams of the spin-3/2 BEG model Hamiltonian with arbitrary bilinear and
biquadratic pair interactions in the (T, h) plane, exhibiting one dynamic tricritical point. The
disordered (D), ferromagnetic-3/2 (F3/2), ferromagnetic-1/2 (F1/2), and seven different coexistence
regions, namely the F3/2 +F1/2, F3/2 +D, F3/2 +F1/2 +FQ, F3/2 +FQ, F1/2 +FQ, F3/2 +FQ + D,
and FQ + D regions, are found. Dashed and solid lines represent the first- and second-order phase
transitions, respectively, the dynamic tricritical point is indicated with filled circles, and B denotes
the dynamic double critical end point. (a) k = 0.1, d = 0.5, (b) k = 1.0, d = 0.75, (c) k = 0.5,
d = 0.125, (d) k = 0.1, d = −0.375, (e) k = 0.5, d = −0.25, (f) k = 0.5, d = −0.375,
(g) k = 1.0, d = −0.25, (h) k = 0.5, d = −1.0, and (i) k = 0.5, d = 1.25.
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Figure 5. Phase diagrams of the spin-3/2 BEG model Hamiltonian with arbitrary bilinear
and biquadratic pair interactions in the (T, h) plane, exhibiting two dynamic tricritical points.
The disordered (D), ferromagnetic-3/2 (F3/2), and five different coexistence regions, namely the
F3/2 + F1/2, F3/2 + FQ, F3/2 + F1/2 + FQ, F3/2 + D, and FQ + D regions, are found. Dashed
and solid lines represent the first- and second-order phase transitions, respectively, the dynamic
tricritical points are indicated with filled circles, and B denotes the dynamic double critical end
point. (a) k = 2.0, d = −0.125, (b) k = 2.0, d = 1.25.

in figures 4–6 for various values of k and d . In these phase diagrams, the solid and dashed
lines represent the second-and the first-order phase transition lines, respectively, the dynamic
tricritical point is denoted by a filled circle, and B represents the double critical end point. As
seen from the figures, one, two or three dynamic tricritical points occur.

In figure 4, only one dynamic tricritical point exists and the following nine main
topological different types of phase diagrams are found. (i) For k = 0.1 and d = 0.50,
figure 4(a) represents the phase diagram in the (T, h) plane. In this phase diagram, at high
reduced temperature (T ) and reduced external magnetic field (h) the solutions are disordered
(D) and at low values of T and h they are ferromagnetic-3/2 (F3/2). The dynamic phase
boundary between these regions, F3/2 → D, is the second-order phase transition line. At
low reduced temperatures, there is a range of values of h in which the D and the F3/2 phases or
regions coexist, called the coexistence region, F3/2 + D. The F3/2 + D region is separated from
the F3/2 and the D phases by the first-order phase transition line. The system also exhibits only
one dynamic tricritical point where both first-order phase transition lines merge and which
signals the change from the first- to the second-order phase transition. Finally, we should
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Figure 6. Phase diagrams of the spin-3/2 BEG model Hamiltonian with arbitrary bilinear and
biquadratic pair interactions in the (T, h) plane, exhibiting three dynamic tricritical points. The
disordered (D), ferromagnetic-3/2 (F3/2), ferromagnetic-1/2 (F1/2), and seven different coexistence
regions, namely the F3/2 +F1/2, F3/2 +FQ, F1/2 +FQ, F3/2 +D, F3/2 +F1/2 +FQ, F3/2 +FQ + D,
and FQ + D regions, are found. Dashed and solid lines represent the first- and second-order
phase transitions, respectively, and the dynamic tricritical points are indicated with filled circles.
(a) k = 0.1, d = −0.5, (b) k = 0.1, d = −0.625, (c) k = 0.1, d = −0.7125, (d) k = 0.1,
d = −1.0, (e) k = 0.5, d = −0.125, and (f) k = 1.0, d = 0.125.

also mention that very similar phase diagrams were also obtained in the kinetic spin-1/2 Ising
model [11], kinetic spin-1 BC model [10], kinetics of the mixed spin-1/2 and spin-1 Ising
ferrimagnetic system [12], and as well in the kinetic spin-3/2 BC model [16]. This fact can
be explicitly seen from the ground state phase diagrams of these three models. (ii) This type
of phase diagram is presented for k = 1.0 and d = 0.75, seen in figure 4(b), and is similar to
figure 4(a) but only differs from figure 4(a) in which low T and h values, the F3/2 + FQ phase
or coexistence region also exist. The dynamic phase boundary between this F3/2 + FQ region
and the F3/2 phase is the first-order line. (iii) For k = 0.5 and d = 0.125, the phase diagram is
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illustrated in figure 4(c), and it is similar to case (ii), except that the F3/2 +F1/2 phase occurs for
very low values of T and h. The dynamic phase boundary between the F3/2 + F1/2 phase and
the F3/2 phase is also a first-order line. (iv) For k = 0.1 and d = −0.375, the phase diagram is
presented in figure 4(d). While this phase diagram has the same phase topology as the diagram
in figure 4(c), it differs from figure 4(c) in which the F3/2 + F1/2 and F3/2 + FQ phases or
coexistence regions become large and in a certain range of h they overlap each other, hence
one more coexistence region, namely the F3/2 + F1/2 + FQ phase also exists. The dynamic
phase boundaries among these coexistence regions are all first-order lines. (v) For k = 0.5
and d = −0.25, the calculated phase diagram is illustrated in figure 4(e). This is the more
interesting phase diagram in which the system exhibits the dynamic double critical end point
(B), the dynamic tricritical point and five coexistence regions or phases, namely F3/2 + F1/2,
F3/2 + F1/2 + FQ, F3/2 + FQ + D, F3/2 + FQ, and F3/2 + D. The dynamic boundaries between
these coexistence phases are first-order lines, except the boundary between the F3/2 + F1/2

and F3/2 + FQ phases; this boundary is a second-order line. This phase diagram also exhibits
the dynamic double critical end point (B), where two critical phases coexist, which occurs for
high values of T and h. (vi) For k = 0.5 and d = −0.375, the phase diagram is seen in
figure 4(f). This phase diagram is very similar to figure 4(e), except that the F3/2 + D phase
disappears and the FQ + D phase occurs for low values T and high values of h. (vii) This
type of phase diagram is presented for k = 1.0 and d = −0.25, seen in figure 4(g), and is
similar to figure 4(f) but only differs from figure 4(f) in that the F3/2 + FQ + D phase region
disappears and the FQ + D phase region becomes large. (viii) We show the phase diagram for
k = 0.5 and d = −1.0, seen in figure 4(h). This is also an interesting phase diagram in which
the F1/2 and F1/2 + FQ phases occur and the dynamic phase boundary between the F1/2 phase
and the D phase is a second-order line, boundaries among the F1/2 phase and the coexistence
phase regions are first-order lines. Moreover, the FQ + D phase becomes smaller. (ix) The
phase diagram is constructed for k = 0.5 and d = −1.25, seen in figure 4(i), and is similar
to figure 4(h) but differs from figure 4(h) in that the F3/2 + F1/2 and F3/2 + F1/2 + FQ phase
regions disappear.

In figure 5, two dynamic tricritical points exist and only two fundamental phase diagrams
are found. (i) For k = 2.0 and d = −0.125, the phase diagram is seen in figure 5(a). In this
phase diagram, besides two dynamic tricritical points and a dynamic double critical end point,
where the D and FQ + D critical phases coexist, the D phase and four coexistence regions or
phases, namely F3/2 + F1/2, F3/2 + F1/2 + FQ, F3/2 + FQ, and FQ + D, exist in the system.
The dynamic phase boundaries among these phases are first-order lines, except the boundary
between the F3/2 + F1/2 and F3/2 + FQ phases, and between the F3/2 + FQ and FQ + D phases,
that are second-order lines, seen in the figure. (ii) This type of phase diagram is presented
for k = 2.0 and d = 1.25, seen in figure 5(b), and is similar to figure 5(a) but differs from
figure 5(a) in that the FQ + D phase region disappears and the F3/2 and F3/2 + D phases occur.
The dynamic phase boundary between the F3/2 phase and D phase is a second-order line, but
the boundaries among the F3/2, F3/2 + D, and F3/2 + FQ phases are all first-order lines.

In figure 6, three dynamic tricritical points exist and the following six main topological
different types of phase diagrams are found. (i) For k = 0.1 and d = −0.50, the phase
diagram is illustrated in figure 6(a), and besides the F1/2 and D phases the system exhibits four
coexistence regions or phases, namely F3/2 +F1/2, F3/2 +F1/2 +FQ, F3/2 +FQ, and F1/2 +FQ.
The dynamic boundaries among these coexistence phases are all first-order lines, except the
boundary between the F3/2 + F1/2 and F3/2 + FQ phases, that is a second-order line. Moreover,
the boundary between the F1/2 and D phases is also a second-order line in which occurs for high
values of h. Since the boundary between the F3/2 + F1/2 and F3/2 + F1/2 + FQ phases for low
values of T and h is a first-order line, one dynamic tricritical point occurs. On the other hand,
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the second-order phase line, that occurs at high values of h and separates the F1/2 phase from
the D phase, has a bulge and suggests the occurrence of some sort of re-entrant phenomenon,
because as the h values increase the system passes from the ordered phase to the disordered
phase and then passes from the disordered (D) phase to the ordered phase, and finally back to
the D phase again. At both ends of this second-order line two dynamic tricritical points exist,
because the two boundaries between the F1/2 and F1/2 +FQ phases, one for low values of T and
for high values of h, are first-order lines. (ii) For k = 0.1 and d = −0.625, the phase diagram
is seen in figure 6(b). This phase diagram is very similar to figure 6(a) for high values of h, but
for low values of h the F1/2 phase and F1/2 + FQ coexistence phase region occur. The dynamic
phase boundary between the F1/2 phase and D phase is a second-order line for high values
of T and the other lines are first-order lines for low values of T and h, therefore a dynamic
tricritical point occurs in this region. (iii) For k = 0.1 and d = −0.7125, the phase diagram
is illustrated in figure 6(c), and it is similar to figure 6(b), except that the F3/2 + F1/2 phase
region becomes smaller and the F3/2 + F1/2 + FQ phase disappears. (iv) The phase diagram
is presented for k = 0.1 and d = −1.0, seen in figure 6(d), and is similar to figure 6(c) but
differs from figure 6(c) in that the F3/2 +F1/2 phase region disappears and the F1/2 +FQ phases
that exist for high values of h become smaller. (v) The phase diagram is obtained for k = 0.5
and d = −0.125, seen in figure 6(e). This is one of the more interesting phase diagrams in
which the system exhibits three dynamic tricritical points and also five coexistence regions or
phases, namely F3/2 + F1/2, F3/2 + F1/2 + FQ, F3/2 + FQ, F3/2 + FQ + D and F3/2 + D and
also D phase. The dynamic boundaries among these phases are first-order lines, except the
boundaries between the F3/2 + F1/2 and F3/2 + FQ phases, and between the F3/2 and D phase;
these boundaries are second-order lines. This phase diagram is very similar to figure 6(a) for
low values of h and T , but for high values of h the F1/2, F1/2 + FQ phases and the bulge on
the second-order phase line disappear. Moreover, the F3/2 + FQ phase becomes large and the
F3/2 + D phase appears for high values of h and low values of T . Furthermore, one more
F3/2 +D phase occurs for high values of T and low values of h. The dynamic phase boundaries
between the F3/2 + D and F3/2 phases, and between the F3/2 + D and D phases, are first-order
lines, and these lines start h = 0.0 and merge at one of the dynamic tricritical points, seen in
the figure; compare figures 6(a) and (e). (vi) For k = 1.0 and d = 0.125, the phase diagram
is given in figure 6(f). While this phase diagram has the same phase topology as the diagram
in figure 6(e), it differs from figure 6(e) in that the F3/2 + FQ + D phase disappears and the
FQ + D phase occurs for high values of h and low values of T .

6. Summary and discussion

We have analysed within a mean-field approach the stationary states of the kinetic spin-3/2
BEG model. We use a Glauber-type stochastic dynamics to describe the time evolution of the
system. We have studied the behaviour of the time-dependence dynamic order parameters,
namely magnetization or the dipole moment and the quadrupole moment in a period, also
called the dynamic magnetization and dynamic quadrupole moment, as a function of reduced
temperature. The DPT points are found by investigating the behaviour of the dynamic order
parameters in a period as a function of the reduced temperature. These investigations are also
checked and verified by calculating the Liapunov exponents. Finally, we present the phase
diagrams in the (T, h) plane. We found that the behaviour of the system strongly depends on
the values of k and d and 17 different phase diagram topologies are found. The phase diagrams
exhibit the D, F3/2, F1/2, and/or F3/2 + F1/2, F3/2 + D, F3/2 + F1/2 + FQ, F3/2 + FQ, F1/2 + FQ,
F3/2 + FQ + D, and/or FQ + D coexistence regions depending on k and d values and the
dynamic phase boundaries among these phases and coexistence regions are mostly first-order
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lines, except the boundaries between the F3/2 and D phases and between the F1/2 and D phases;
these boundaries are second-order lines, seen in figures 4–6. Moreover, the dynamic phase
boundary between the F3/2 + F1/2 and F3/2 + FQ phases is also a second-order line. Therefore,
one, two, or three dynamic tricritical points and a dynamic double critical end point also occur,
that depend on k and d values. Finally, we also mention that we have also calculated the
Liapunov exponents to verify the stability of the solutions and the DPT points.

Finally, since we found the 17 different phase diagram topologies in the kinetic spin-3/2
BEG model, this system gives more complex and richer phase diagrams than in the kinetic
spin-1 BC, and kinetic isotropic BEG models, as well as in the kinetic spin-3/2 BC model.
For example, in the kinetic spin-1 BC model [31] we have found five main different types of
phase diagrams; for the kinetic spin-1 isotropic BEG model [32] and spin-3/2 BC model [27]
the six fundamental types of phase diagrams are obtained. On the other hand, in the present
system, the phase diagrams exhibit seven coexistence phase regions besides one disordered
and two ordered phases depending on k and d values, but for the spin-1 BC model the phase
diagrams exhibit one coexistence phase region besides one disordered and one ordered phase
depending only on d values; for the spin-1 isotropic BEG model the phase diagrams exhibit
three coexistence phase regions besides the disordered and the ordered phase; for the spin-3/2
BC model the phase diagrams exhibit four coexistence phase regions besides the one disordered
and two ordered phases depending on d values. Moreover, only one phase diagram, namely
figure 4(a), is obtained in the present model, which is similar to one of the phase diagrams
which has been found in the above mentioned models as well as in the kinetic spin-1/2 Ising
model, that only one type of phase diagram was obtained for the spin-1/2 model, and hence it
is similar to figure 4(a) [29]. Furthermore, in this model in some cases three dynamic tricritical
points occur, whereas one or two dynamic tricritical points appear in the above mentioned
models.
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